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From Biology to Economics, experiments play a crucial role across the sciences. In many cases
one has a lot of freedom in how to design an experiment. How do you design it well? How do
you make sure it is fair and efficient? For answers to these questions, we can turn to Mathematics
and in particular, a corner called Combinatorics, where such questions have been formalised and
studied for centuries. Two key concepts arise - randomness and combinatorial designs. Despite huge
progress in the mathematical understanding of these notions, one key challenge remains, namely
how to marry these two ideas and generate random designs. This is a notoriously hard problem,
but recent breakthrough results open up entirely new vistas and the future of the mathematical
art of experimental design looks very bright.

Randomness: Making experiments fair. Suppose you are given the following task. Design
an experiment that compares the effect of different fertilisers on the yield of a certain crop. Let us
say you have n fertilisers (with n batches of each) and an n units by n units square field split into
individual lots, each lot having size 1 by 1 and taking exactly one fertiliser. How do you arrange
the fertilisers on the field in order to test and compare them? One way to do this would be to
split your big square field into rows of lots and assign each row a fertiliser. See for example the
distribution indicated in Figure 1 below. Whilst this is certainly a neat arrangement, it leads to
an experiment that is not very fair. Indeed, it is susceptible to bias that will skew our results.
Imagine, for example, that a pest infestation appears from the South. The last row, corresponding
to a single fertiliser will then have very poor results, even though it could actually be the best one!

Figure 1: A row by row distribution of
fertilisers

In order to avoid such unwanted biases, we want a dis-
tribution that is somehow far from neat, as any ordered
rule for distribution will inevitably lead to a potential
bias. How do we achieve such a distribution? A beauti-
fully simple and yet extremely effective idea is to simply
use a random distribution. That is, for each lot, we roll
an n-sided die and assign the fertiliser corresponding to
the outcome to that lot (of course, at some point you may
run out of a given fertiliser, but then you can simply roll
again until you get a choice where you have a free batch
to use). See Figure 2 for an example of a random distri-
bution. The great thing about this is that it is extremely
fair. Indeed, it gives no (dis-)advantage to any particular
fertiliser and will most likely be completely free of un-
wanted symmetry. Whilst it is impossible to know when
the idea of using random objects first originated, it was pioneered by Paul Erdős in the second half
of the 20th century, who realised the power of using randomness to get combinatorial objects with
desired properties. Often such properties are difficult to obtain by deterministic means, but flourish



naturally with the use of randomness. Among the earliest results of the so-called “Probabilistic
method”, we find the lower bound on diagonal Ramsey numbers and the existence of graphs with
large girth and large chromatic number. The use of random objects to answer certain questions
also spurred the study of random discrete structures in their own right, and the study of properties
of random combinatorial objects is to this day a thriving and fascinating area at the intersection
of Combinatorics, Probability Theory, Computer Science and Statistics.

Figure 2: A random distribution of fer-
tilisers

Using randomness is highly effective in being robust
to unwanted factors that could effect the outcome of our
experiment, but what if there are critical factors that we
actually want to test? Indeed, let us imagine a more
complicated task for an experiment. Again you have dif-
ferent fertilisers which you want to place in a square of
lots, but this time, you want to test the performance of
each fertiliser in relation to other factors that correspond
to the rows and columns of your square. For example,
it could be that each row of your square is at a differ-
ent height and each column receives a different amount
of water. Our distribution should still be fair but, cru-
cially, we should have data for each fertiliser and different
height/water level, so that we can identify, for example,
the optimal combination. Thus we see a problem with

the random distribution as in Figure 2; there are several columns and rows that completely miss
some fertilisers. There is a fix, but it comes at a price. Indeed, if we use a larger field, say our
field is m units by m units, then placing our n fertilisers randomly, will most likely result in a
distribution where each row and each column sees each fertiliser when (and only when) m is at
least n log n. This example is an instance of the famous Coupon Collector Problem from Discrete
Probability. Actually in this case each row/column will also see each fertiliser around m/n times.
Whilst this looks like a nice experiment distribution, it is very wasteful in resources as the extra
log n factor means that we need lots more of each fertiliser, not to mention a larger field.

Figure 3: A diagonal LS

Combinatorial Designs: Making experiments effi-
cient. In many cases one can imagine that costs dictate
that the design of the experiment should be optimally ef-
ficient. Thus, returning to our example, is it possible to
use an n units by n units square and just use n copies of
each fertiliser but still have each row and each column us-
ing each fertiliser once? Given that the random approach
does not work for this, maybe it is time to revisit the or-
dered approach, as we did for Figure 1. Indeed, suddenly
our initial arrangement doesn’t seem so bad anymore. At
least every fertiliser is tested with each water level (in
each column) and so we have comprehensive results for
half of our task. In fact, it is not too hard to get an
ordered arrangement that works, simply consider the di-
agonal arrangement depicted in Figure 3.

Mathematically speaking, what we are talking about is known as an n-Latin Square (LS); an
n× n array with entries in [n] = {1, 2, . . . , n} such that each number appears exactly once in each
row and in each column. These objects were introduced by Leonhard Euler in the 18th century



and are central in Design Theory. In fact, you have probably also seen a large number of LSs
in your life time as they form popular games in the form of (completed) Sudoku squares, which
are 9 by 9 LSs in which we additionally impose each number to appear exactly once in each of
the 3 × 3 main subsquares. Euler realised that he could generate many different Latin squares
and was interested in increasing the symmetrical requirements, looking for example, for the so
called Mutually Orthogonal Latin Squares (MOLS) where two LSs overlap in a way that no pair
is repeated in a square. See for example Figure 4. In the experimental design analogy, one can
think that you are not only testing fertilisers but also pesticides in the same experiment and want
to arrange them so that each fertiliser and each pesticide is tested at each height/water level and
additionally every pair of fertiliser/pesticide is also tested together.

Figure 4: A pair of MOLSs

LSs and MOLSs are just one example of a wide family of mathematical objects known as
Combinatorial Designs. Each is a collection of subsets of a finite set that have strong symmetric
and balanced properties. Since Euler, these objects have been studied on a mathematical basis and
a deep theory has been developed. They have also found many applications in different scientific
disciplines. Indeed, their use in Experimental Design, as in the example above, was pioneered
by Ronald Fisher in the 1920s-30s [3] as he was concerned with the agricultural applications of
statistical methods. Another application is the construction of error-correcting and error-detecting
codes, codes that are used to transmit information robustly and, preferably, efficiently. Indeed, to
reduce the amount of additional bits transmitted, we would like to find optimal codes. An important
family of optimal codes is Perfect Codes, rare objects that decompose the space of binary strings
in a highly symmetrical way. A canonical example is constructed from the Fano Plane, an example
of a combinatorial design known as a Steiner Triple System (STS) that can also be interpreted as
a finite projective geometry. Take a collection {S1, . . . , S7} of 3-subsets of [7] such that each pair
appears in exactly one triplet (see Figure 5). Now we construct a code as follows: for each i ∈ [7]
create a binary word vi of length 7 by writing a 1 at entry j if and only if i ∈ Sj (see Figure 5).
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S1 = {1, 3, 5} v1 = 1010100

S2 = {2, 3, 4} v2 = 0111000

S3 = {1, 2, 6} v3 = 1100001

S4 = {1, 4, 7} v4 = 1001001

S5 = {2, 5, 7} v5 = 0100101

S6 = {3, 6, 7} v6 = 0010011

S7 = {4, 5, 6} v7 = 0001110

Figure 5: Geometric realisation of Fano plane, collection of 3-subsets and their corresponding
elements in the (7,4)-Hamming code.

Add the zero word of length 7, 0000000, and also include all the complementary words (words
obtained by replacing zeroes by ones, and vice versa). This collection of 16 strings is known as the
(7, 4)-Hamming code. It transmits 4 bits of information by sending 7 bits, and it does so with some
level of robustness: it can correct up to 1 error or detect up to 2. That is, if our goal is to correct
errors and only 1 bit of the codeword is changed in the transmission (flipped from a 1 to a 0 or vice
versa), the codewords are different enough that we can retrieve the original codeword. Similarly, if
our goal is to detect errors and there are at most 2 bits changed, the word received will not match
up with any codeword and so we will know that some error has occurred along the transmission.

Let us give one last example of a design, which is in fact also an STS and, like Sudoku squares,
came from the world of recreational mathematics. This is known as Kirkman’s school girl problem, a
mathematical puzzle published in 1850 [7]: “Fifteen young ladies in a school walk out three abreast
for seven days in succession: it is required to arrange them daily so that no two shall walk twice
abreast”. This puzzle was the earliest explicit example of an STS (like the one in Figure 5), where
one asks for a collection of subsets of some n-vertex set of size 3 such that every pair of vertices
features exactly once. Thus Kirkman’s problem seeks to find an n-vertex STS that, additionally,
can be split into 7 partitions of [n]. Note that Kirkman’s problem can also be interpreted as asking
for an experimental design; if we are interested in a social experiment, we may want to ask each
girl to rate the other girl’s conversation and so it will be necessary for every pair of girls to walk
together at least once. As with LSs, an STS represents the most efficient way of achieving this.

An interesting feature of Kirkman’s problem is that it is not easy. Indeed, unlike the diagonal
LS that we saw in Figure 3, there is no simple rule that can give the configuration necessary and it
can take quite some time to come up with a solution, as a good recreational mathematics problem
should! This is in fact very indicative of the development of Combinatorial Design Theory since
its birth. We have seen some simple examples, but one can easily generalise definitions and require
more from our designs, as Euler did already by asking for MOLS. A natural generalisation of STSs
is the following: for integers 1 ≤ t ≤ k ≤ n we can ask for a collection of k-subsets on n vertices
such that every t-subset is covered exactly once, known as an (n, k, t)-Steiner system (SS).

Most of the research in Combinatorial Designs in the 20th century revolved around the question
of whether the designs that we ask for actually exist? For some parameters, one can easily prove no
such design exists via a combinatorial trick called double counting. For instance, if there exists an
(n, k, t)-SS of size m, then the total number of t-subsets in [n] is

(
n
t

)
, while the number of t-subsets

covered by the collection of m k-subsets of the design is
(
k
t

)
m. Since m is integer,

(
k
t

)
must divide(

n
t

)
. These sort of conditions are known as divisibility conditions and are clearly necessary for the

existence of designs. For other sets of parameters, more complicated proofs can show non-existence



despite the divisibility conditions being satisfied. On the other side, much effort has gone into
constructing designs with various parameters and properties. Although this is sometimes easy, for
most designs this very quickly gets hard, like with Kirkman’s problem. Solutions often involved
using Geometry, as in Figure 5, and Algebra, as in Figure 3, where one can view the construction
as placing, for each row i and column j, the fertiliser Fk+1 where k = i+ j mod n.

Random designs: The best of both worlds. We have seen how randomness leads to fair
experiments whilst designs can be used to construct efficient experiments testing multiple different
factors. Neither approach is perfect. Indeed we saw that randomness can lead to redundancy
when we require multiple factors to be tested whilst it is clear that the unwanted symmetry of
an arbitrary combinatorial design does not necessarily lead to a fair experiment. For instance,
consider the example in Figure 3: if the central South-West to North-East diagonal gets the
most light, then the fertilisers represented by (light-)blue will have a pretty sizeable advantage.

Figure 6: A random LS

In order to fix this, one idea is to construct the design
in a random fashion. Yates already envisioned this in
1933. Discussing about experiment designing, he wrote
“. . . it would seem theoretically preferable to choose a
square at random from all the possible squares of given
size”. For example, Figure 6 depicts a random LS of
size 10. It certainly seems well-distributed and so robust
against bias. In general though, Yates’ request poses a
considerable challenge. One could hope to just have a
list of all possible designs and then pick one at random
but this quickly becomes intractable. There are already
7,580,721,483,160,132,811,489,280 distinct1 LSs of size 10
and this number grows superexponentially with n. There-
fore some new idea is needed to construct a random (or

close to random) design.
In the 90s there was a big breakthrough by Jacobson and Matthews, who gave a Markov Chain

Monte Carlo (MCMC) algorithm for generating random LSs [5]. The MCMCmethod revolutionised
the world of random algorithms in the last decades of the 20th century. The basic scheme of MCMC
algorithms is the following: Given a class of objects one is interested in sampling from, define a
local operation on them which allows us to navigate through the space of such objects. Then, we
may follow a random trajectory (commonly referred to as a random walk) on our sample space
by, at each step, performing a local operation chosen at random from all the possible ones. Under
many circumstances, after just a relatively small number of steps (depending on the object size),
the trajectory will lead to an object that is close to uniformly random. There is a large and rich
theory developed for ways of proving that this is the case, know as mixing times of Markov chains.
Due to their symmetry constraints, it is not easy to define a local operation on LSs. The pivotal
contribution of Jacobson and Matthews was to find a “not so local” operation between them which
yielded an MCMC algorithm for sampling an LS. Whilst one can prove that this algorithm will
eventually lead to an almost uniform LS, and it seems to work well in practice, to this day we
cannot provide mathematical evidence that the algorithm is efficient (that is, polynomial in n).
For other designs (for example STSs), the situation is even worse, with a few similar algorithms
proposed but very little proven about their uniformity or effectiveness.

Even if we cannot generate random designs, perhaps we can still say something about their

1We think of two squares as the same if one can be obtained from the other by permuting rows and columns.



properties. Until recently, there has only been sporadic result on this. For example, Babai showed
in the 80s that random STSs have a trivial automorphism group [1], providing evidence that random
designs do indeed provide bias-free constructions for experimental designs.

Absorption: A new way to construct designs. In 2014, Peter Keevash announced a result
that shook the mathematical community. He had found a new way to construct designs through
the absorption method [6], provided that the divisibility conditions were satisfied. To think about
Keevash’s method, consider the following random process which aims to build an n-LS. As when
we considered the random distribution in Figure 2, we are going to use random dice rolls. In each
step we pick a random row and a random column and fill the corresponding entry with a random
symbol but this time, in contrast to the simple approach that we discussed at the beginning of the
article, we make sure that we do not violate the rules of an LS. So when we use some symbol in
a given row and column, we forbid that symbol from being used again in that row and column.
This random process, known as the semi-random method or the Rödl Nibble, introduced by Vojtěch
Rödl in 1985, has been used successfully to tackle similar problems. Rödl showed [11] that this
process will get quite far and fill almost all of the cells but unfortunately, we will most likely get
stuck. That is, before completing the LS, there will be no cells left where we can place symbols in
a valid way, without getting two of the same symbol in the same row or column.

The idea of absorption is to fix this by first putting aside absorbing structures made up of some
collections of rows, columns and symbols, that have lots of flexibility in how they can contribute
to an LS. We then run the random process avoiding these absorbing structures, until we get stuck.
At this point, almost all of the remaining entries of the LS have been filled and we reintroduce
the absorbing structures using their flexibility to make some room and fill in the remaining empty
cells (absorb them into the object) thus obtaining a full LS. Of course, this sketch is at a very high
level and the real challenge is to define and find absorbing structures in an appropriate way so that
they have the power to achieve this. Indeed, before Keevash’s result, both absorption and random
processes were well-known techniques in the field of Combinatorics but it was not expected that this
approach could handle structures so rigid as designs. Keevash managed to do so by using algebraic
techniques to construct absorbing structures and shortly after, Glock, Kühn, Lo and Osthus [4]
managed to bypass the need for algebra, adopting a new multi-round absorption process coined
iterative absorption.

These sets of authors were the first who managed to incorporate randomness into the construc-
tion of designs, thus providing templates for experiments that, while not being uniformly random,
enjoy many of the desired bias-free qualities that are present in them. Whilst this is a fantastic
outcome, their main motivation came purely from showing the existence of designs. Indeed, as
discussed previously, the construction of designs quickly gets complicated and the use of algebraic
and geometric techniques is very limited. For example, Wilson [13] in the 1970s notoriously con-
structed (n, k, 2)-SSs whenever their existence is not ruled out by the divisibility conditions (the
case of STSs was proven already by Kirkman himself!). However in general, (n, k, t)-SSs were not
constructed for all possible parameters and a longstanding conjecture of Steiner from 1853 stated
they should always exist provided that the divisibility conditions are satisfied2 and n is sufficiently
large (see [12]). The method of construction of Keevash (and likewise the second group of authors)
was flexible enough to tackle this and construct designs for all feasible parameters (with n large
enough), which was a huge breakthrough. Indeed before Keevash, not even a single (n, k, t)-SS
with t ≥ 6 was known to exist.

2In fact, Steiner conjectured the existence of even more general designs, where one can choose how many times
each t-set is covered. These are also given by the methods of Keevash.



These methods opened up completely new vistas for combinatorial designs. Not only could
they construct a wide range of different designs but the methods actually construct many distinct
designs with some fixed set of parameters, thus providing the best known lower bound for the count
of designs. Recently, these methods have also been used to give designs with special properties,
leveraging the control that we can use on the random process to mould our design in a certain
desired way. Indeed, Kwan, Sah, Sawhney and Simkin built on the approach of Glöck et al. to
construct so-called high girth STSs [9], establishing a famous conjecture of Erdős from 1973.

Towards understanding Random Designs. Unfortunately the absorption processes used to
construct designs do not give designs that are close to uniform. Indeed, the absorbing structures
used are very delicate and so skew the randomness given by the random part of the construction.
Although many designs can be constructed this way, it is not even clear that more than a negligible
proportion of the set of all designs are given by these methods. Thus Yates’ problem of generating
designs that are truly random (or close to random) remains elusive.

Nonetheless, somewhat surprisingly, Kwan realised that if certain properties hold with very
high probability in the random process, then one can infer that uniformly random designs actually
enjoy these properties also. His methods built on those of Keevash and involved providing lower
and upper bounds on the number of ways in which a partial design can be completed in order
to estimate how far the uniform distribution on designs skews the distribution on partial designs
given by the random process. Using this ingenious analysis, he was able to unlock new properties
of random designs. He showed that uniformly random STSs contain perfect matchings [8]: there
is a collection of disjoint 3-sets covering the vertex set of the STS. Further work building on his
methods has established more involved properties of STSs as well as LSs [2, 10].

Despite these recent developments that were unimaginable before the work of Keevash, it is
clear that the study of random combinatorial designs is still very much in its infancy and many
beautiful and interesting questions remain wide open, in particular the quest to actually generate
random designs and thus have access to the perfect experiment constructions!

The first author of this article will start a project on this topic in April 2024, hosted by the second author of

this article and funded by a Marie Curie postdoctoral fellowship awarded by the EU.
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